Search results for "stacking fault"
showing 10 items of 13 documents
Prediction of Weak Topological Insulators in Layered Semiconductors
2012
We report the discovery of weak topological insulators by ab initio calculations in a honeycomb lattice. We propose a structure with an odd number of layers in the primitive unit-cell as a prerequisite for forming weak topological insulators. Here, the single-layered KHgSb is the most suitable candidate for its large bulk energy gap of 0.24 eV. Its side surface hosts metallic surface states, forming two anisotropic Dirac cones. Though the stacking of even-layered structures leads to trivial insulators, the structures can host a quantum spin Hall layer with a large bulk gap, if an additional single layer exists as a stacking fault in the crystal. The reported honeycomb compounds can serve as…
Growth and defect studies of CdTe particles
2013
The paper reports the epitaxial growth of cadmium telluride (CdTe) particles by thermal deposition on cleaved planes of (001)NaCl and (001)KBr. Using high resolution transmission electron microscopy and electron diffraction it was shown that CdTe particles could have different orientation and phase (cubic or hexagonal) depending on the substrate temperature. Their most common defects are twins and stacking faults.
New zeolite-like RUB-5 and its related hydrous layer silicate RUB-6 structurally characterized by electron microscopy.
2020
RUB-5 and its related hydrous layer silicate RUB-6 were synthesized in the 1990s, but so far their structures have remained unknown due to their low crystallinity and disorder. The combination of 3D electron diffraction, X-ray powder diffraction, high-resolution transmission electron microscopy, structural modelling and diffraction simulations has enabled a comprehensive description of these two nanomaterials, revealng a new framework topology and a unique silica polymorph.
STACKING-FAULTS IN VERY FINE PALLADIUM PARTICLES SUPPORTED ON PUMICE
1990
By means of an X-ray diffraction study, carried out with best-fitting procedures, of the asymmetry and peak maximum shifts of some reflections, stacking-faults in the FCC lattice of very fine palladium particles supported on pumice were detected using the Warren-Wagner-Cohen theoretical approach.
Length-scale effects in the nucleation of extended dislocations in nanocrystalline Al by molecular-dynamics simulation
2001
The nucleation of extended dislocations from the grain boundaries in nanocrystalline aluminum is studied by molecular-dynamics simulation. The length of the stacking fault connecting the two Shockley partials that form the extended dislocation, i.e., the dislocation splitting distance, rsplit, depends not only on the stacking-fault energy but also on the resolved nucleation stress. Our simulations for columnar grain microstructures with a grain diameter, d, of up to 70 nm reveal that the magnitude of rsplit relative to d represents a critical length scale controlling the low-temperature mechanical behavior of nanocrystalline materials. For rsplit>d, the first partials nucleated from the bou…
Structural and electronic properties ofβ-FeSi2nanoparticles: The role of stacking fault domains
2014
We use conventional and aberration-corrected transmission electron microscopy (TEM) and ab initio calculations to investigate the structural and electronic properties of \ensuremath{\beta}-FeSi${}_{2}$ nanoparticles, which are a promising material for photovoltaic applications due to a band gap of 1 eV and a high absorption coefficient. The nanoparticles have average sizes of \ensuremath{\sim}20 nm, form aggregates, and are prepared by gas-phase synthesis. Amorphous SiO${}_{x}$ shells with thicknesses of \ensuremath{\sim}1.7 nm around \ensuremath{\beta}-FeSi${}_{2}$ cores are identified on individual nanoparticles using electron energy-loss spectroscopy, while stacking fault domains in the …
Study of inversion domain pyramids formed during the GaN:Mg growth
2003
AbstractThestudyofstructuraldefectsinducedbytheintroductionofMgduringthegrowthofMOCVDGaNispresented.Themagnesiumincorporationintothecrystalgrowthnotonlyinduceschangesinthestackingsequencefromhex-agonaltocubicstructures,butalsoinvertstheGaNpolarityfromGa-facetoN-face.Basedonthedifferentsurfacestructureandsurfacemigrationlengthofabsorbingprecursorsforeachpolaritytype(Ga-orN-face),the3DgrowthontopoftheN-facetriangulardefectisdescribed.TheN-facematerialischaracterizedbythreedanglingbondsofni-trogenthatpointuptowardthec-planesurface,enhancingthecrystalgrowthalongthec-axis. 2002ElsevierScienceLtd.Allrightsreserved. Keywords:Inversiondomain;Stackingfault;Polarity 1. IntroductionFurther progress tow…
Distorted f.c.c. arrangement of gold nanoclusters: a model of spherical particles with microstrains and stacking faults
2008
The structures of two samples of gold nanoclusters supported on silica were studied by X-ray powder diffraction (XRD) and X-ray absorption spectroscopy. The data relative to both techniques were analysed by an approach involving simulation based on structural models and fitting. The XRD model concerned a distorted f.c.c. (face-centred cubic) arrangement, with microstrains and parallel stacking faults in approximately spherical particles; as an alternative possibility, a linear combination of ordered f.c.c. and noncrystalline (decahedral and icosahedral) particles was also taken into account. Both approaches gave calculated patterns closely resembling the experimental data. X-ray absorption …
Optical properties of wurtzite GaN/AlN quantum dots grown on non-polar planes: the effect of stacking faults in the reduction of the internal electri…
2016
The optical emission of non-polar GaN/AlN quantum dots has been investigated. The presence of stacking faults inside these quantum dots is evidenced in the dependence of the photoluminescence with temperature and excitation power. A theoretical model for the electronic structure and optical properties of non-polar quantum dots, taking into account their realistic shapes, is presented which predicts a substantial reduction of the internal electric field but a persisting quantum confined Stark effect, comparable to that of polar GaN/AlN quantum dots. Modeling the effect of a 3 monolayer stacking fault inside the quantum dot, which acts as zinc-blende inclusion into the wurtzite matrix, result…
Twin coarsening in CdTe(111) films grown on GaAs(100)
2006
Abstract We present a scanning force microscopy study of twin coarsening in CdTe(1 1 1) films grown on GaAs(1 0 0). Two types of CdTe(1 1 1) twins grow epitaxially and with equal probability on the long-range wavy surface structure developed by previous in situ annealing of the GaAs(1 0 0) substrate. Due to this initial substrate wavy structure, the grain coarsening during film growth leads to a quasi-one-dimensional rippled pattern. We propose a coarsening mechanism between twins driven by the formation of stacking faults.